240 County Road Ipswich, MA 01938-2723 Tel 978-927-5054 Fax 978-921-1350 www.neb.com info@neb.com ## New England Biolabs Certificate of Analysis Product Name: Q5® High-Fidelity 2X Master Mix Catalog #: M0492S/L Concentration: 2X Lot #: 0171709 Assay Date: 09/2017 Expiration Date: 9/2019 Storage Temp: -20°C Composition (1X): Proprietary Specification Version: PS-M0492S/L v1.0 Effective Date: 15 Sep 2017 | Assay Name/Specification (minimum release criteria) | Lot #0171709 | |--|--------------| | Endonuclease Activity (Nicking, Polymerase, dNTP) - A 50 μ l reaction in NEBuffer 2 in the presence of 400 μ M dNTPs containing 1 μ g of supercoiled pUC19 DNA and a minimum of 10 units of Q5® High-Fidelity DNA Polymerase incubated for 4 hours at 37°C results in <10% conversion to the nicked form as determined by agarose gel electrophoresis. | Pass | | Non-Specific DNase Activity (16 hour, Buffer) - A 50 µl reaction in 1X Q5® High-Fidelity Master Mix containing 1 µg of T3 DNA in addition to a reaction containing Lambda-HindIII DNA incubated for 16 hours at 37°C results in a DNA pattern free of detectable nuclease degradation as determined by agarose gel electrophoresis. | Pass | | PCR Amplification (20 kb Lambda DNA, Master Mix) - A 50 μl reaction in 1X Q5® High-Fidelity Master Mix and 1.0 μM primers containing 10 ng Lambda DNA for 22 cycles of PCR amplification results in the expected 20 kb product. | Pass | | PCR Amplification (7 kb Human Genomic DNA, Master Mix) - A 50 μl reaction in 1X Q5® High-Fidelity Master Mix and 0.5 μM primers containing 20 ng Human Genomic DNA for 30 cycles of PCR amplification results in the expected 7 kb product. | Pass | | Phosphatase Activity (pNPP) - A 200 µl reaction in 1M Diethanolamine, pH 9.8, 0.5 mM MgCl ₂ containing 2.5 mM <i>p</i> -Nitrophenyl Phosphate (pNPP) and a minimum of 100 units of Q5® High-Fidelity DNA Polymerase incubated for 4 hours at 37°C yields <0.0001 unit of alkaline phosphatase activity as determined by spectrophotometric analysis. | Pass | ## New England Biolabs Certificate of Analysis | Assay Name/Specification (minimum release criteria) | Lot #0171709 | |--|--------------| | Protein Purity Assay (SDS-PAGE) - Q5® High-Fidelity DNA Polymerase is ≥ 95% pure as determined by SDS -PAGE analysis using Coomassie Blue detection. | Pass | | qPCR DNA Contamination (<i>E. coli</i> Genomic) - A minimum of 2 units of Q5 $^{\circ}$ R High-Fidelity DNA Polymerase is screened for the presence of <i>E. coli</i> genomic DNA using SYBR $^{\circ}$ R Green qPCR with primers specific for the <i>E. coli</i> 16S rRNA locus. Results are quantified using a standard curve generated from purified <i>E. coli</i> genomic DNA. The measured level of <i>E. coli</i> genomic DNA contamination is ≤ 1 <i>E. coli</i> genome. | Pass | | RNase Activity (Extended Digestion) - A 10 μ l reaction in NEBuffer 4 containing 40 ng of a 300 base single-stranded RNA and a minimum of 1 μ l of Q5® High-Fidelity 2X Master Mix is incubated at 37°C. After incubation for 4 hours, >90% of the substrate RNA remains intact as determined by gel electrophoresis using fluorescent detection. | Pass | Authorized by Melanie Fortier 15 Sep 2017 Inspected by Tony Spear-Alfonso 13 Sep 2017